Product Brochure

/inritsu

For MT8870A Universal Wireless Test Set

MX887x Series Measurement Software MV887x Series Waveforms

Smartphones / Tablets Test Solution

Building Production Line Efficiency

Suitable for Non-signalling Testing of Smartphone

The remarkable success of smartphones and tablets is driving demand for faster inspection speeds on smartphone and communication module production lines and this market trend is expected to continue. Coupled with this, wireless communication standards are continuing to evolve and develop, leading to a growing range of specifications. In these circumstances, terminal and module makers are looking to increase line efficiency while assuring smooth and flexible support for the various new standards.

With support for up to four test modules, the MT8870A Universal Wireless Test Set is the ideal cost-effective solution for high-efficiency inspection lines.

The licensed TX measurement software packages and waveform files make it easy to support each communication standard.

MT8870A Universal Wireless Test Set MU887000A TRX Test Module See the separate catalog (MT8870A-E-A-1) for details.

100

00

64

THE THE THE

R

60

00

(#0

00

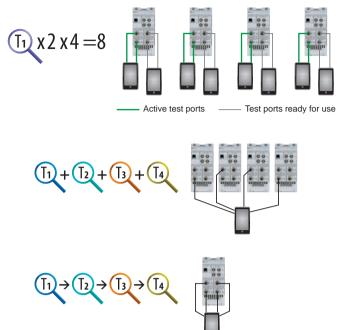

.....

0

60 60

Ć

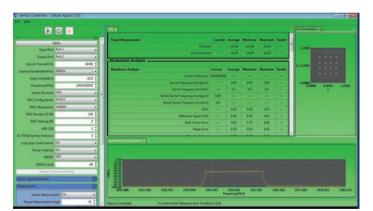
Flexible Test System Configuration



Simultaneous 8 Units Connection: Since LTE mobiles have RX diversity antenna, both TRX and RX diversity antennas must be adjusted and tested. The MU887000A TRX Test Module supports four ports in one module for connecting two LTE terminals. Up to four modules can be installed in one MT8870A Universal Wireless Test Set, supporting connection of up to eight LTE terminals and simultaneous testing up to four terminals.

Four Simultaneous Measurements: Recent smartphones support various wireless interfaces, such as *Bluetooth* and WLAN, in addition to cellular. Test times are cut by testing multiple wireless standards simultaneously.

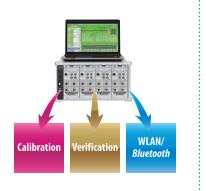
Continuous Measurements by Module Continuous Measurements of Multiple Communications Standards: Licensing the TX measurement software packages and waveforms support continuous multiple measurements with one MU887000A TRX Test Module.


One License Supports Four Modules

The TX measurement software packages and waveforms can each be licensed separately. One license can be used for up to four TRX test modules, cutting test

equipment costs.

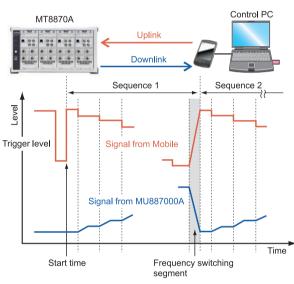
A TX measurement software package is required for TX tests for each communication standard and a waveform is required for RX tests.


MX887013A LTE FDD Uplink TX Measurement

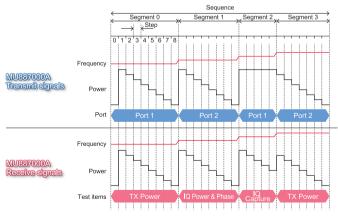
ΡΟΙΝΤ

Supports Flexible Line Changes

Generally, mobile terminal production lines are divided into different processing stages such as calibration, inspection, and function testing. Using different equipment at each stage causes problems, such as different test times, as well as the need to provide spare capacity to cover any faults at each process. Since the MT8870A Universal Wireless Test Set has high versatility due to its modular configuration, it minimizes the need for spare capacity when reconfiguring the production line, etc.



Cellular Technology Measurement Solution

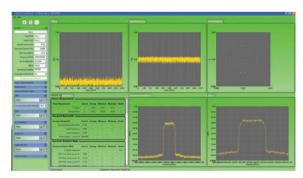

MX887010A Cellular Standards Sequence Measurement

Installing the MX887010A Cellular Standards Sequence Measurement software package in the MT8870A Universal Wireless Test Set can be operated with preconfigured frequency and level in a sequence list to the signal generator and signal analyzer. This software is able to greatly reduce calibration and verification time in conjunction with a chipset that supports capability for highspeed calibration and sequence measurement.

 *1: Sequence measurement requires MX88701xA TX Measurement software
 *2: Requires MV88701xA Waveforms for downlink signal modulation waveforms

TRX vs. Frequency Measurement

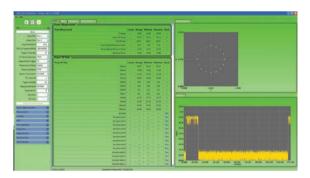
MX887011A W-CDMA/HSPA Uplink TX Measurement MV887011A W CDMA/HSPA Downlink Wayoforms

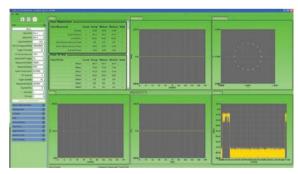

W-CDMA/HSPA Downlink Waveforms

Installing the MX887011A W-CDMA/HSPA Uplink TX Measurement software in the MT8870A provides support for the following 3GPP W-CDMA and HSPA related TX characteristics measurements.

TX Power Frequency Error Occupied Bandwidth Spectrum Mask Adjacent Channel Leakage Power Modulation Analysis

Additionally, the package of MV887011A W-CDMA/HSPA Downlink Waveforms contains downlink signals required for non-signaling measurements; sending the downlink signal for production is as easy as selecting the waveform file.


W-CDMA/HSPA Uplink TX Measurement using CombiView

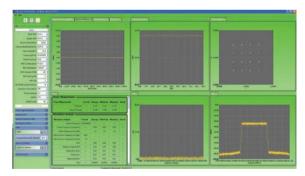

MX887012A GSM/EDGE Uplink TX Measurement MV887012A GSM/EDGE Downlink Waveforms

Installing the MX887012A GSM/EDGE Uplink TX Measurement software in the MT8870A provides support for the following 3GPP GSM and EDGE related TX characteristics measurements.

TX Power Power vs. Time TX Frequency Phase Error EVM Origin Offset Output RF Spectrum

Additionally, the package of MV887012A GSM/EDGE Downlink Waveforms contains downlink signals required for non-signaling measurements; sending the downlink signal for production is as easy as selecting the waveform file.

GSM/EDGE Uplink TX Measurement using CombiView

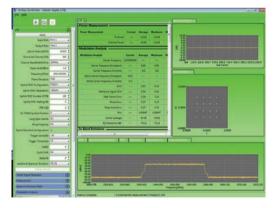

MX887013A LTE FDD Uplink TX Measurement MV887013A LTE FDD Downlink Waveforms

Installing the MX887013A LTE FDD Uplink TX Measurement software in the MT8870A provides support for the following 3GPP LTE FDD related TX characteristics measurements.

TX Power Frequency Error Occupied Bandwidth Spectrum Mask Adjacent Channel Leakage Power Modulation Analysis

Additionally, the package of MV887013A LTE FDD Downlink Waveforms contains downlink signals required for non-signaling measurements; sending the downlink signal for production is as easy as selecting the waveform file.

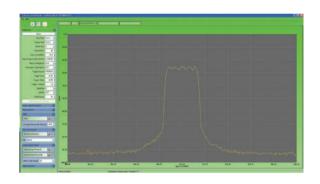
LTE FDD Uplink TX Measurement using CombiView

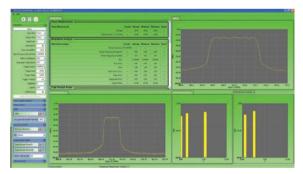

MX887014A LTE TDD Uplink TX Measurement MV887014A LTE TDD Downlink waveforms

Installing the MX887014A LTE TDD Uplink TX Measurement Software in the MT8870A provides support for the following 3GPP LTE TDD related TX characteristics measurements

TX Power Frequency Deviation Occupied Bandwidth Spectrum Mask Adjacent Channel Leakage Power Modulation Analysis

Additionally, the package of MV887014A LTE TDD Downlink Waveforms contains downlink signals required for non-signaling measurements, sending the downlink signal for production is as easy as selecting the waveform file.

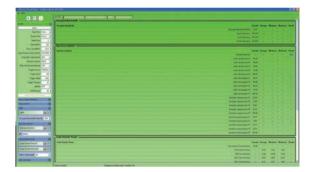

LTE TDD Uplink TX Measurement using CombiView

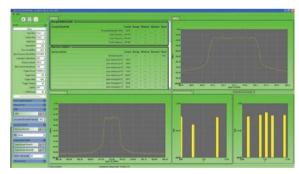

MX887015A CDMA2000 Reverse Link TX Measurement MV887015A CDMA2000 Forward Link Waveforms

Installing the MX887015A CDMA2000 Reverse Link TX Measurement software in the MT8870A provides support for the following 3GPP2 CDMA2000 related TX characteristics measurements.

TX Power Modulation Analysis Occupied Bandwidth Code Domain Power Spurious Emissions

Additionally, the package of MV887015A CDMA2000 Forward Link Waveforms contains downlink signals required for non-signaling measurements; sending the downlink signal for production is as easy as selecting the waveform file.


CDMA2000 Reverse Link TX Measurement using CombiView

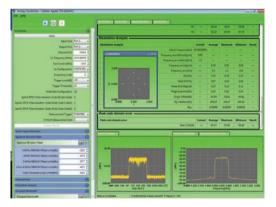

MX887016A 1xEV-DO Reverse Link TX Measurement MV887016A 1xEV-DO Forward Link Waveforms

Installing the MX887016A 1xEV-DO Reverse Link TX Measurement software in the MT8870A provides support for the following 3GPP2 CDMA2000 1xEV-DO related TX characteristics measurements.

TX Power Modulation Analysis Occupied Bandwidth Code Domain Power Spurious Emissions

Additionally, the package of MV887016A 1xEV-DO Forward Link Waveforms contains downlink signals required for non-signaling measurements; sending the downlink signal for production is as easy as selecting the waveform file.

1xEV-DO Reverse Link TX Measurement using CombiView


MX887017A TD-SCDMA Uplink TX Measurement MV887017A TD-SCDMA Downlink Waveforms

Installing the MX887017A TD-SCDMA Uplink TX Measurement Software in the MT8870A provides support for the following 3GPP TD-SCDMA (1.28 Mcps TDD) related TX characteristics measurements

Tx Power Frequency Deviation Occupied Bandwidth Spectrum Mask Adjacent Channel Leakage Power Modulation Analysis

Additionally, the package of MV887017A TD-SCDMA Downlink Waveforms contains downlink signals required for non-signaling measurements, sending the downlink signal for production is as easy as selecting the waveform file.

TD-SCDMA Uplink TX Measurement using CombiView

WLAN Measurement Solution

MX887030A WLAN 802.11b/g/a/n TX Measurement MV887030A WLAN 802.11b/g/a/n Waveforms

The MT8870A Universal Wireless Test Set/MU887000A TRX Test Module supports non-signalling transmitter and receiver tests for all WLAN 802.11b/g/a/n-compliant devices.

The MU887000A-001 6 GHz Frequency Extension Option is required to measure 802.11a/n in 5 GHz band.

Transmitter Test

Installing the MX887030A WLAN 802.11b/g/a/n TX Measurement Software in the MT8870A Universal Wireless Test Set provides support for measurement of key IIEEE 802.11-March 2012 Tx characteristics using all installed TRX test modules.

802.11b TX Measurement

• IEEE 802.11-March 2012 : 802.11b TX Test

802.11b	Test Items
17.4.7.2	Transmit Power Levels
17.4.7.3	Transmit Power Level Control
17.4.7.4	Transmit Spectrum Mask
17.4.7.5	Transmit Center Frequency Tolerance
17.4.7.6	Chip Clock Frequency Tolerance
17.4.7.7	Transmit power-on and power-down ramp
17.4.7.8	RF Carrier Suppression
17.4.7.9	Transmit Modulation Accuracy

Additional 802.11b Measurements

Test Items
Power crest factor
CCDF
IQ offset
Phase & magnitude error
Occupied bandwidth
Power spectral density

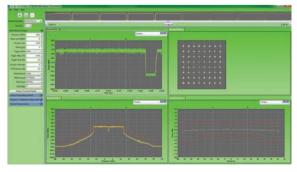
• Graphical Displays (DSSS)

	Graphs
Pc	ower profile
Sp	pectral mask
Co	onstellation diagram
CC	CDF

802.11a/g/n TX Measurement

• IEEE 802.11-March 2012 : 802.11a/g/n TX Test

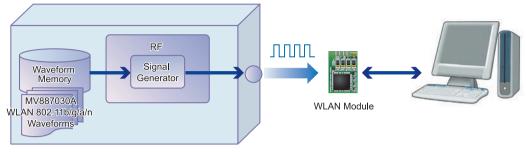
802.11a	802.11g	802.11n	Test Items
18.3.9.2	19.4.8.2	20.3.20.3	Transmit Power Levels
18.3.9.3	19.5.5	20.3.20.1	Transmit Spectrum Mask
18.3.9.5	19.4.8.3	20.3.20.4	Transmit center frequency tolerance
18.3.9.6	19.4.8.4	20.3.20.6	Symbol Clock frequency tolerance
18.3.9.7.2	19.4.8 (18.3.9.7.2)	20.3.20.7.2	Transmitter center frequency leakage
18.3.9.7.3	19.4.8 (18.3.9.7.3)	20.3.20.2	Transmitter spectral flatness
18.3.9.7.4	19.4.8 (18.3.9.7.4)	20.3.20.7.3	Transmitter constellation error
18.3.9.8	19.4.8 (18.3.9.8)	20.3.20.7.4	Transmitter modulation accuracy test


• Additional 802.11a/g/n Measurements

Test Items	
Power crest factor	
CCDF	
Occupied bandwidth	
Power spectral density	

• Graphical Displays (OFDM)

Graphs	
Power profile	
Spectral mask	
Constellation diagram	
CCDF	
Spectral Flatness	
EVM against Symbol	
EVM against Subcarrier	


The CombiView software that ships with the MT8870A displays measurement results graphically. Multiple displays can be defined and all numeric results can be displayed in one window.

802.11n TX Measurement using CombiView

Receiver Test

The MV887030A application provides support for transmission of WLAN 802.11b/g/a/n signals from the vector signal generator to the device under test. The number of received packets can then be read using the chipset vendor's control software.

MU887000A TRX Test Module

Waveform Parameter

802.11 Standard	Data Rate/Modulation	Bandwidth	Packet Length	Remarks
802.11b	11, 5.5, 2, 1 Mbps	-	1024 or 100 bytes	Long Preamble
802.11a/g	54, 48, 36, 24, 18, 12, 9 and 6 Mbps	-	1000 or 100 bytes	
802.11n	MCS 0 to 7 and 32	20 MHz and 40 MHz	4096 or 500 bytes	Nss: 1, Guard Interval: Long

802.11b RX Measurement

• IEEE 802.11-March 2012 : 802.11b RX Test

802.11b	Test Items
17.4.8.2	Receiver minimum input level sensitivity
17.4.8.3	Receiver maximum input level
17.4.8.4	Receiver adjacent channel rejection*

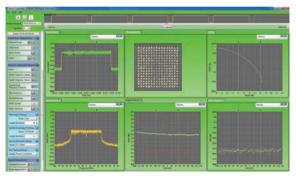
*: Requires separate signal generator

802.11a/g/n RX Measurement

• IEEE 802.11-March 2012 : 802.11a/g/n RX Test

802.11a	802.11g	802.11n	Test Items
18.3.10.2	19.5.2	20.3.21.1	Receiver minimum input level sensitivity
18.3.10.3	19.5.3	20.3.21.2	Adjacent channel rejection*
18.3.10.4		20.3.21.3	Nonadjacent channel rejection*
18.3.10.5	19.5.4	20.3.21.4	Receiver maximum input level

*: Requires separate signal generator


MX887031A WLAN 802.11ac TX Measurement MV887031A WLAN 802.11ac Waveforms

The MT8870A Universal Wireless Test Set/MU887000A TRX Test Module (with MU887000A-001 6 GHz Frequency Extension) supports nonsignalling transmitter and receiver tests for all WLAN 802.11ac-compliant devices.

Transmitter Test

Installing the MX887031A WLAN 802.11ac TX Measurement Software in the MT8870A Universal Wireless Test Set supports in-band wireless measurements defined by the latest IEEE P802.11ac/D5.0 standard (January 2013 provisional version) on all installed TRX test modules. The 802.11ac 20/40/80/160 MHz bandwidths and 256QAM (MCS9) modulation method are supported.

Using the CombiView PC application bundle displays graphs of 802.11ac TX measurements.

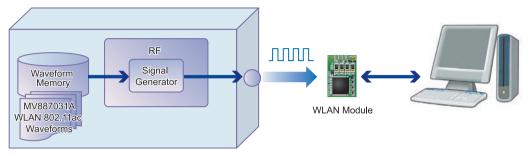
802.11ac TX Measurement using CombiView

802.11ac TX Measurement

• IEEE P802.11ac/D5.0, January 2013 : 802.11ac TX Test

802.11ac	Test Items
22.3.18.1	Transmit spectrum mask
22.3.18.2	Spectral flatness
22.3.18.3	Transmit center frequency tolerance
22.3.18.3	Symbol Clock frequency tolerance
22.3.18.4	Modulation accuracy
22.3.18.4.2	Transmitter center frequency leakage
22.3.18.4.3	Transmitter constellation error
22.3.18.4.4	Transmitter modulation accuracy (EVM) test
	Transmit power level

Additional 802.11ac Measurements


Т	est Items
Power crest factor	
CCDF	
Occupied bandwidth	
Power spectral densit	у

• Graphical Displays (OFDM)

Graphs
Power profile
Spectral mask
Constellation diagram
CCDF
Spectral Flatness
EVM against Symbol
EVM against Subcarrier

Receiver Test

The MV887031A application provides support for transmission of WLAN 802.11ac signals from the vector signal generator to the device under test. The number of received packets can then be read using the chipset vendor's control software.

MU887000A TRX Test Module

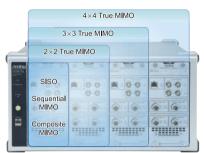
Waveform Parameter

802.11 Standard	Data Rate/Modulation	Bandwidth	Packet Length	Remarks
802.11ac	MCS 0 to 9	20, 40, 80, 160 MHz	4096 or 500 bytes	Nss: 1, Guard Interval: Long

802.11ac RX Measurement

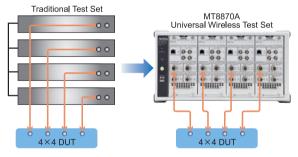
• IEEE P802.11ac/D5.0, January 2013 : 802.11ac RX Test

802.11ac	Test Items
22.3.19.1	Receiver minimum input level sensitivity
22.3.19.2	Adjacent channel rejection*
22.3.19.3	Nonadjacent channel rejection*
22.3.19.4	Receiver maximum input level


*: Requires separate signal generator

Wireless LAN MIMO Measurement Solution

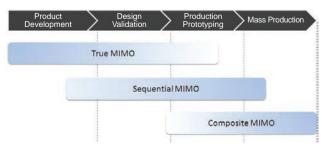
WLAN 802.11n/11ac MIMO Measurement **Function**


Installing the MU887000A Tx Test Module*1 in the MT8870A Universal Wireless Test Set with the installed WLAN TRx Measurement Software supports easy set-up and measurement of up to 4×4 Wireless LAN MIMO devices.

*1: Requires MU887000A-001 6 GHz Frequency Extension option when measuring WLAN 802.11n (5 GHz) or 802.11ac

Normally, measuring each antenna of a MIMO device (streaming) requires a system set-up composed of up to four measuring instruments of the same type as well as synchronized timing of the signal generators required for MIMO measurement and the 10-MHz reference signal generators, plus complex cable connections to control each measuring instrument.

This type of system set-up is not only troublesome for technicians performing MIMO measurements, but also wastes man hours and money. Integrating the MU887000A into the MT8870A main frame solves the problems of synchronizing signals over external cables experienced with conventional MIMO measurement systems to simplify system set-up and slash time and costs.


The MX887030A WLAN 802.11b/g/a/n Tx Measurement Software and MV887030A WLAN 802.11b/g/a/n Waveform Files are required for WLAN 802.11n MIMO measurements.

The MX887031A WLAN 802.11ac Tx Measurement Software and MV887031A WLAN 802.11ac Waveform Files are required for WLAN 802.11ac MIMO measurements*2.

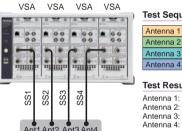
*2: Supports up to 4×4 MIMO WLAN 802.11ac measurements

MIMO Measurement Solutions

The MT8870A is the ideal MIMO measurement solution for WLAN MIMO devices at every stage from R&D to production.

True MIMO

Features


The MT8870A supports parallel measurement of wireless LAN device streaming characteristics using multiple MU887000A units installed in the main frame.

It is ideal for performing streaming measurements from each antenna under conditions closely mimicking a real usage environment at the R&D and design stages. There is no need for troublesome external cable connections, because the timing of each MU887000A unit and the 10-MHz reference frequency are synchronized by the internal connections, offering easy True MIMO measurement.

Transmitter Test

- DUT transmits four MIMO signals simultaneously.
- MU887000A in each slot tests each antenna (stream)
- Fully independent measurements with parallel processing by each MU887000A
- Measurement Results

Each Power, EVM, Spectral Mask, etc.

est Sequ	ence:
Antenna 1	
Antenna i	

Test Results:

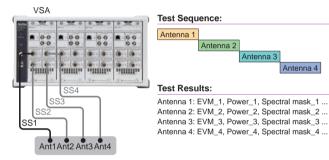
Antenna 1: EVM_1, Power_1, Spectral mask_1
Antenna 2: EVM_2, Power_2, Spectral mask_2
Antenna 3: EVM_3, Power_3, Spectral mask_3
Antenna 4: EVM_4, Power_4, Spectral mask_4

Receiver Test

- Sends test packets for each antenna to TRx Test Module in each slot
- Measurement Results
- Rx Sensitivity of Each Antenna
- Synchronization 10-MHz Reference Frequency **Digital Timing**

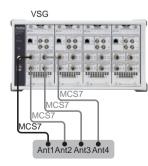
Note: RF Local Frequency Sync not supported

All spatial streams must be synchoronized to the start of the packet.


Sequential MIMO

Features

Wireless LAN device MIMO measurements at R&D design require stream measurements from each antenna. Although True MIMO measurement supports an environment in which each antenna is measured simultaneously in parallel, the cost is high because multiple MU887000A units are required. Since one MU887000A can support up to four test ports, the Sequential MIMO measurement functions helps cut costs by switching between antennas to perform accurate sequential measurement of each antenna of the MIMO device.


Transmitter Test

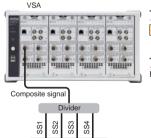
- DUT transmits four MIMO signals simultaneously
- MT8870A switches connected test port and performs TRx test at each antenna (stream)
- Measurement Results
- Each Power, EVM, Spectral Mask, etc.

Receiver Test

- MT8870A switches test port and sends test signal to each antenna to perform Rx sensitivity test
- Waveform uses SISO signal
- Measurement Results Rx Test for Each Antenna

Composite MIMO

Features


Production-line operators urgently need ways to cut production costs by shortening tact times through reduced measurement times. MIMO device measurement methods currently focus on measuring each antenna one-by-one but viewed from the perspective of reduced tact time and lower costs, production lines could achieve better efficiency and profits with one single measurement of all MIMO device antennas instead of separate measurements of all antennas (total streaming). Installing the MT8870A with one MU887000A supports use of the Composite MIMO measurement function to measure wireless LAN RF characteristics at one time by combining and dividing multiple MIMO signals using an external divider (combiner)*.

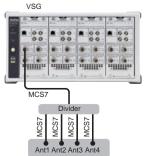
*: Recommended Product

Mini-Circuits, ZN4PD1-63 + (Frequency Range: 2000 MHz to 6000 MHz)

Transmitter Test

- DUT transmits three MIMO signals simultaneously
- MT8870A receives composite test signal via combiner, which combines each streaming MIMO signal output from each antenna, and evaluates RF characteristics
- Measurement Results Composite Power (individual powers) Composite EVM and Spectral Mask Values

Test Sequence:


Composite

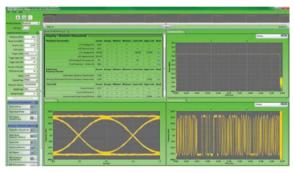
Test Results:

EVM_Avg, Power_Avg, Spectral mask_Avg ...

Receiver Test

- Diversity Test (SISO signal)
- Transmits test signal from MT8870A and splits into identical signals at divider (combiner) for input to each antenna
- Since same signal received by multiple antennas, performs better evaluation than Rx sensitivity results obtained from one antenna
- Measurement Results
 - Rx Sensitivity (Result is one value only; test specifications of sensitivity changed by number of antennas)

Bluetooth Measurement Solution


MX887040A Bluetooth TX Measurement MV887040A Bluetooth Waveforms

The MT8870A Universal Wireless Test Set/MU887000A TRX Test Module supports non-signalling transmitter and receiver tests for Bluetooth Basic Rate (BR), Enhanced Data Rate (EDR) and low-energy (Smart) devices.

Transmitter Test

The MX887040A Bluetooth TX Measurement Software has two Bluetooth TX test modes. The SIG Standard mode measures TX test packets sent from the device under test according to the Bluetooth RF Test Specifications. In SIG standard mode, the system returns only measurements that are compatible with the payload type of the captured packets. In Speed Test mode, the system returns results for all enabled measurements regardless of the packet payload.

Because the Speed Test mode supports all BR/EDR measurements for individual packet types, it is ideal for rapid testing on production lines.

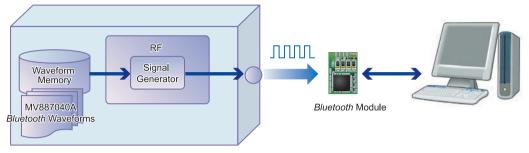
Bluetooth TX Measurement using CombiView

Bluetooth TX Measurement

• Bluetooth Test Specification v1.2/2.0/2.0 + EDR/2.1/2.1 + EDR/3.0/3.0 + HS/4.0: RF-PHY.TS.4.0.2/RF-PHY.TS.4.0.3: TX Test

Specification	Test Items
TRM/CA/01/C	Output Power
TRM/CA/03/C	Power Control
TRM/CA/06/C	TX Output Spectrum – Adjacent Channel Power
TRM/CA/07/C	Modulation Characteristics
TRM/CA/08C	Initial carrier frequency tolerance
TRM/CA/09/C	Carrier Frequency drift
TRM/CA/10/C	EDR relative transmit power
TRM/CA/11/C	EDR Carrier frequency stability
TRM/CA/11/C	EDR Modulation accuracy
TRM/CA/12/C	EDR Differential Phase Encoding
TRM/CA/13/C	EDR In-band Spurious Emissions
TRM/CA/14/C	Enhanced Power Control
TRM-LE/CA/01/C and TRM-LE/CA/02/C	BLE Output power
TRM-LE/CA/03/C and TRM-LE/CA/04/C	BLE In-band Emissions
TRM-LE/CA/05/C	BLE Modulation characteristics
TRM-LE/CA/06/C and TRM-LE/CA/07/C	BLE Carrier frequency offset and drift

• Graphical Displays (Basic Rate/BLE)


Graphs		
Power Burst profile		Powe
Frequency deviation		Freq
Eye diagram		IQ co
Spectral profile		DEV

• Graphical Displays (EDR)

Graphs
Power burst profile
Frequency deviation
IQ constellation diagram
DEVM against symbol
Vector diagram
Spectral profile

Receiver Test

The MV887040A application provides support for transmission of *Bluetooth* signals from the vector signal generator to the device under test. The number of received packets can then be read using the chipset vendor's control software.

MU887000A TRX Test Module

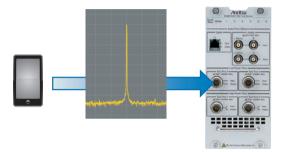
Standard Waveforms

Bluetooth	Waveform Type
Basic Rate	DH1/DH3/DH5
Enhanced Data Rate (EDR)	2-DH1/2-DH3/2-DH5/3-DH1/3-DH3/3-DH5
Bluetooth Low Energy	BLE/PER Report Integrity Test
Others	GFSK/PSK CW (Interference Waveform)

Bluetooth RX Measurement

 Bluetooth Test Specification v1.2/2.0/2.0 + EDR/2.1/2.1 + EDR/3.0/3.0 + HS/4.0: RF-PHY.TS.4.0.2/RF-PHY.TS.4.0.3: RX Test

Specification	Test Items
RCV/CA/01/C	Sensitivity – single slot packets
RCV/CA/02/C	Sensitivity – multi-slot packets
RCV/CA/06/C	Maximum Input Level
RCV/CA/07/C	EDR Sensitivity
RCV/CA/08/C	EDR BER Floor Performance
RCV/CA/10/C	EDR Maximum Input Level
RCV-LE/CA/01/C and	BLE Receiver sensitivity
RCV-LE/CA/02/C	
RCV-LE/CA/06/C	BLE Maximum input signal level
RCV-LE/CA/07/C	PER Report Integrity


Simple Test Solution / Receiver Test Solution

MX887050A Short Range Wireless Average Power and Frequency Measurement

Installing the MX887050A Short Range Wireless Average Power and Frequency Measurement Software in the MT8870A Universal Wireless Test Set provides support for simple tests for WLAN and *Bluetooth* short range wireless. The MX887050A supports CW power and frequency measurements on unmodulated signals and on signals modulated using the methods shown in the table below.

Supported Modulation Methods				
WLAN DSSS, OFDM				
Bluetooth	GFSK, PSK			

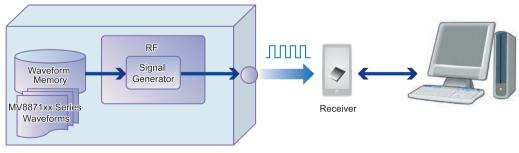
For Simple Tests

MX887050A Short Range Wireless Average Power and Frequency Measurement

Test Port		(< 0.000 ms			Full captu	e		à	624 ms
W Analysis	0	CW Analysis X							
Frequency (MHz):		Measurements						-	
Power Level (dBm):	-30 🕻			Average	Minimum	Maximum	Lower Limit	Upper Limit	Result
Duration (ms):	0.500 :	Average Power (dBm)					-100.00	100.00	Fatt
Setting (us):	0 .	Peak Power (dilim)	-12.21						
Trigger Mode:	Immediate •	frequency			Minimum	Maximum	Lower Limit	Upper Limit	Result
Trigger Delay (ms):	0.000	Frequency Offset (His)	-86					1000000	Pasz
Trigger Level (dl)	-20 (
Digitay Name	Sal Frish								
Measurements	\odot								

CW Measurement using CombiView

MV8871xx Series Waveforms


The MT8870A/MU887000A supports Rx tests of receivers using the various common communications technologies in widespread use today.

RX Test Using Waveforms

The MV8871xx Series Waveforms is a file of waveforms for generating any output waveform standardized by each communications technology. Saving and selecting these files in the internal waveform memory of the MU887000A TRX Test Module makes it easy to output a signal for any waveform pattern from the built-in vector signal generator.

Waveform file generated from the MU887000A TRX Test Module vector signal generator can be used to run sensitivity tests and simple BER Rx tests* on GPS and digital broadcast equipment supporting mobile terminals and communications appliances.

*: An external attenuator is required when running Rx tests at lower levels than the lower output limit of the signal generator.

MU887000A TRX Test Module

Main Specifications of MV8871xxA Series Waveforms

MV887100A GPS Waveforms

Waveform File Name	MV887100A_GPS_0002	MV887100A_GPS_0003		
Application	Sensitivity Test/BER Measurement Parity Detection/Sensitivity Test			
Transmitted Data Modulation Method	BPSK			
Satellite ID Number	1			
Reference Standard	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION			

MV887102A GLONASS Waveforms

Waveform File Name	MV887102A_GLONASS_0001	MV887102A_GLONASS_010x MV887102A_GLONASS_011x	
Application	Sensitivity Test/BER Measurement	Simultaneous GPS and GLONASS measurements*, C/No measurements	
Transmitted Data Modulation Method	BPSK	BPSK	
Satellite ID Number	3	-	
Reference Standard	INTERFACE CONTROL DOCUMENT Navigational radio signal In bands L1, L2 Edition 5.1		

*: MV887100A GPS waveforms license is required to perform simultaneous GPS and GLONASS measurements.

MV887110A DVB-H Waveforms

Waveform File Name	MV887110A_DVBH_0001	
Application	Simple BER Measurement	
Transmitted Data	PN9fix*	
Transmitted Data Modulation Method	QPSK	
Encoding Rate	2/3	
System Bandwidth	8 MHz	
Cell ID	0x0000	
Reference Standard	ETSI EN 300 744 V1.5.1 (2004-11)	

*: fix indicates the PN sequence is not continued if the waveform is regenerated from the first position.

MV887111A ISDB-T Waveforms

Waveform File Name	MV887111A_ISDBT_0001 MV887111A_ISDBT_0002 MV887111A_ISDBT_0003		MV887111A_ISDBT_0004	
Application	Device Evaluation	Video and Audio Evaluation*1	1	Simple BER Measurement
Waveform Cycle/Group	2 [Frame]	40 [Frame]	40 [Frame]	4 [Frame]
Transmitted Data	PN23fix ^{*2}			
Transmitted Data Modulation Method	Layer A: 64QAM and Layer A: QPSK Layer B: 64QAM			Layer A: QPSK or 16QAM Layer B: 64QAM
Guard Interval	1/8			
Encoding Rate	No Encoding	Layer A: 2/3 Layer B: 7/8	Layer A: 2/3 Layer B: 3/4	Layer A: 2/3 or 1/2 Layer B: 3/4 or 7/8
Mode	3			
Reference Standard	ARIB STD-B31			

*1: Rx not guaranteed for all receivers

*2: fix indicates the PN sequence is not continued if the waveform is regenerated from the first position.

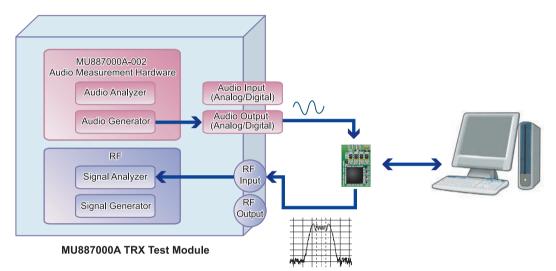
MV887112A ISDB-Tmm Waveforms

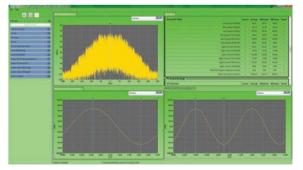
Waveform File Name	MV887112A_ISDBTmm_SSpatA_000x_0M (x = 1 to 6) MV887112A_ISDBTmm_SSpatA_000x_8M (x = 1 to 6) MV887112A_ISDBTmm_SSpatC_000x_0M (x = 7 to 12) MV887112A_ISDBTmm_SSpatC_000x_8M (x = 7 to 12) The XXXX_8M waveform pattern is a waveform with the file name XXXX_0M to which an 8-MHz offset has been added	
Application	Simple BER Measurement	
Waveform Cycle/Group	4 [Frame]	
Transmitted Data	PN23fix*	
Transmitted Data Modulation Method	QPSK or 16QAM	
Waveform Format	A type or C type	
Guard Interval	1/4	
Encoding Rate	1/2 or 2/3	
Mode	3	
Reference Standard	ARIB STD-B46	

*: fix indicates the PN sequence is not continued if the waveform is regenerated from the first position.

* Consult Anritsu for details about each waveform file.

FM/Audio Measurement Solution


MX887070A FM/Audio TRX Measurement MV887070A FM RDS Waveforms

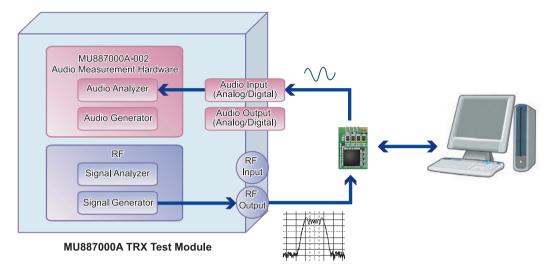

The MT8870A/MU887000A supports TRx tests of FM transceivers and adding an option also supports audio tests.

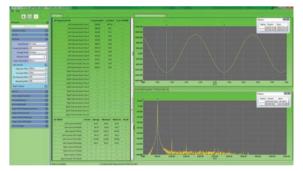
FM Transmitter Test

Installing the MU887000A-002 Audio Measurement Hardware in the MU887000A TRX Test Module outputs either analog or digital format audio signals for up to 8 multi-tones (stereo left and right channels) from the output connector. The audio signal is available for input to the FM transmitter audio input connector.

The MX887070A FM/Audio TRX Measurement software is used with the built-in signal analyzer of the MU887000A TRX Test Module to execute various audio tests, such as measurement of RF frequency, level and frequency deviation of audio FM signals output from FM transmitters, as well as AF signal frequency, level (up to 12 multi-tones), distortion, stereo crosstalk, etc., when using AF signal waveforms, and analysis of internal data and output of RDS data by decoding data when receiving RDS waveforms.

FM Transmitter Test using CombiView

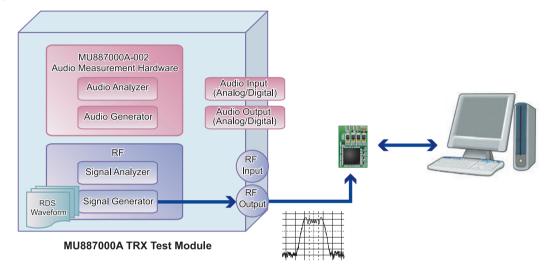



RDS Measurement Results using CombiView

FM Receiver Test

To test FM receivers using the MX887070A FM/Audio TRX Measurement software, the specified test audio signal is frequency modulated and a signal is output from the vector signal generator.

Installing the MU887000A-002 Audio Measurement Hardware in the MU887000A TRX Test Module inputs either analog or digital format audio signals output from the FM receiver to the built-in audio analyzer of the MU887000A to perform audio tests including AF signal frequency and level (up to 12 multi-tones), distortion rate, stereo crosstalk, etc.



FM Receiver Test using CombiView (device audio output measurement)

FM Receiver Test RDS (Radio Data System)

Loading the MV887070A FM RDS waveforms supports output of waveforms including transmitted data such as Radio Text data from the built-in vector signal generator based on the FM RDS (Radio Data System) standard.

Main Specifications of FM RDS Waveforms

Waveform File N	lame	MV887070A_FMRDS_0001	MV887070A_FMRDS_0002	MV887070A_FMRDS_0003	MV887070A_FMRDS_0004
Application		DUT RDS Rx Function Test DUT Rx Test		DUT Rx Test	
	Tone Count	1			
AF Left Channel	Tone Frequency	1 kHz			
Tone Deviation		75 kHz × 0.9			
	Tone Count	1			
AF Right Channel	Tone Frequency	2 kHz			
Channel	Tone Deviation 75 kHz x 0.9				
Pilot Deviation	lot Deviation 75 kHz x 0.1				
RDS Deviation 75 kHz		75 kHz × 0.05			
Reference Stand	Reference Standard IEC 62106 Edition 2.0				

* Consult Anritsu for details about the FM RDS waveform file.

Specifications

MX887010A Cellular Standards Sequence Measurement

Common Item	Measuring Object	W-CDMA/GSM/LTE Uplink signal, CDMA2000/1xEV-DO Reverse Link signal		
Common item	Frequency Range	400 MHz to 3.8 GHz		
Analy	Analysis Time	1 ms, 10 ms		
	Span	1, 2.5, 5, 10, 25, 50, 100 MHz		
		Span Resolution		
		1 MHz 100 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz		
		2.5 MHz 1 kHz, 3 kHz, 10 kHz, 30 kHz		
		5 MHz 3 kHz, 10 kHz, 30 kHz, 100 kHz		
Spectrum Monitor	Resolution	10 MHz 3 kHz, 10 kHz, 30 kHz, 100 kHz		
		25 MHz 10 kHz, 30 kHz, 100 kHz, 300 kHz		
		50 MHz 30 kHz, 100 kHz, 300 kHz, 1 MHz		
		100 MHz 30 kHz, 100 kHz, 300 kHz, 1 MHz		
		160 MHz 30 kHz, 100 kHz, 300 kHz, 1 MHz		
	Detection Mode	Average, Peak		
	Power Measurement Bandwidth	Range: 0.001 MHz to (Setting span) MHz, Resolution: 0.001 MHz		
	Number of Steps	10 to 100 steps		
	Power Step Time	0.5, 1,2, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80 ms		
Multiple Power Measurement	Filter Type	Low-pass filter: 1.23, 1.4, 3, 5, 10, 15, 20 MHz RRC filter: 3.84 MHz		
	Measurement Window	1 to 90%, Resolution 1%		
	Trigger Level	-40 to 0 dB (Based on the input level value)		
	Segment Duration	Range: 1 to 80 ms, Resolution: 1 ms, W-CDMA, CDMA2000, LTE		
TX/RX vs.	Measurement Filter	Low-pass filter: 1.23, 1.4, 3, 5, 10, 15, 20 MHz RRC filter: 3.84 MHz		
Frequency	Measurement Window	Range: 1 to 90%, Resolution: 1%		
·	Number of Segment*	2 to 1600		
	Number of Sequence*	1 to 40		
	Segment Duration	Range: 200 µs to 20000 µs, Resolution: 1 µs		
Narrowband	Measurement Bandwidth	15 kHz		
Power vs. Time	Measurement Window	Range: 10 to 100%, Resolution: 1%		
	Number of Segment	1 to 1000		

*: (Number of Segment × Number of Sequence) ≤1600

MX887011A W-CDMA/HSPA Uplink TX Measurement

Common Item	Measuring Object	W-CDMA Uplink signal
Common term	Frequency Range	400 MHz to 2.7 GHz
	Setting Input Range	-65 to +35 dBm (Test port 1 and 2) -65 to +25 dBm (Test port 3 and 4)
	Measurement Accuracy	After CAL, 10° to 40°C Test port 1 and 2 ±0.3 dB (typ.), ±0.5 dB (-25 to +35 dBm) ±0.7 dB (-55 to -25 dBm) ±0.9 dB (-65 to -55 dBm)
RF Power		Test port 3 and 4 ±0.7 dB (-25 to +25 dBm) ±0.9 dB (-55 to -25 dBm) ±1.1 dB (-65 to -55 dBm)
	Linearity	±0.2 dB (≥–55 dBm, 0 to 40 dB) ±0.4 dB (≥–65 dBm, 0 to 40 dB)
	Relative Level Accuracy	At the power level difference within 2 dB ±0.1 dB (typ.) (≥–55 dBm, 0 to 40 dB)
Frequency/	Input Level	-30 to +35 dBm (Test port 1 and 2) -30 to +25 dBm (Test port 3 and 4)
Modulation	Carrier Frequency Accuracy	± (Setting frequency × Reference oscillator accuracy + 10 Hz)
Analysis	Modulation Accuracy	Residual EVM: at input of single DPCCH and single DPDCH ≤2.5%
Occupied Bandwidth	Input Level	-10 to +35 dBm (Test port 1 and 2) -10 to +25 dBm (Test port 3 and 4)
	OBW Ratio	80.0 to 99.9%
Adjacent Channel	Input Level	-10 to +35 dBm (Test port 1 and 2) -10 to +25 dBm (Test port 3 and 4)
Leakage Power Ratio	Measurement Points	±5 MHz, ±10 MHz
Nauo	Measurement Range	≥50 dB (±5 MHz), ≥55 dB (±10 MHz)

MX887012A GSM/EDGE Uplink TX Measurement

Common Item	Measuring Object	Normal Burst (GMSK, 8PSK)
Common tterm	Frequency Range	400 MHz to 2.0 GHz
RF Power	Input Level Range	Average power of burst signal -30 to +35 dBm (Test port 1 and 2) -30 to +25 dBm (Test port 3 and 4)
	Measurement Accuracy	After CAL, 10° to 40°C Test port 1 and 2 ±0.3 dB (typ.), ±0.5 dB (-30 to +35 dBm) Test port 3 and 4 ±0.7 dB (-30 to +25 dBm)
	Linearity	±0.2 dB (≥–30 dBm, 0 to 40 dB)
	Carrier Off Power	≥65 dB (≥–10 dBm), ≥45 dB (–30 to –10 dBm)
	Input Level Range	Average power of burst signal -30 to +35 dBm (Test port 1 and 2) -30 to +25 dBm (Test port 3 and 4)
Frequency/	Carrier Frequency Accuracy	± (Setting frequency × Reference oscillator accuracy + 10 Hz)
Modulation Measurement	Modulation Accuracy (GMSK Modulation)	Residual phase error ≤0.5°rms (f ≥500 MHz), ≤0.7°rms (f <500 MHz) ≤2° peak
	Modulation Accuracy (8PSK Modulation)	Residual EVM ≤1.5% rms
Output RF Spectrum Measurement	Input Level Range	Average power of burst signal -10 to +35 dBm (Test port 1 and 2) -10 to +25 dBm (Test port 3 and 4)
	Measurement Point	±100 kHz, ±200 kHz, ±250 kHz, ±400 kHz, ±600 kHz, ±800 kHz, ±1000 kHz, ±1200 kHz, ±1600 kHz, ±1800 kHz, ±2000 kHz
	Measurement Range of due to Modulation	Average of 10 measurements ≤–55 dB (200 kHz, 250 kHz offset), ≤–66 dB (≥400 kHz offset)
	Measurement Range of Switching Transient	≤–57 dB (≥400 kHz offset)

MX887013A LTE FDD Uplink TX Measurement MX887014A LTE TDD Uplink TX Measurement

	Measuring Object	PUSCH, PUCCH
Common Item		,
	Frequency Range	600 MHz to 2.7 GHz, 3.4 GHz to 3.8 GHz
	Input Level Range	-65 to +35 dBm (Test port 1 and 2)
		-65 to +25 dBm (Test port 3 and 4)
		After CAL, 10° to 40°C
		Test port 1 and 2
		±0.3 dB (typ.), ±0.5 dB (-20 to +35 dBm)
		±0.7 dB (-50 to -20 dBm)
	Measurement Accuracy	±0.9 dB (-60 to -50 dBm)
RF Power		Test port 3 and 4
		±0.7 dB (-20 to +25 dBm)
		±0.9 dB (-50 to -20 dBm)
		±1.1 dB (-60 to -50 dBm)
	Line and the	±0.2 dB (≥–50 dBm, 0 to 40 dB)
	Linearity	±0.4 dB (≥–60 dBm, 0 to 40 dB)
	Relative Level Accuracy	At the power level difference within 2 dB
		±0.1 dB (typ.)
	Input Level Range	-40 to +35 dBm (Test port 1 and 2)
		-40 to +25 dBm (Test port 3 and 4)
Frequency/	Carrier Frequency Accuracy	± (Setting frequency × Reference oscillator accuracy + 15 Hz)
Modulation	Modulation Accuracy	Residual EVM: Average of 20 measurements
Measurement		≤2.5%
	In-band Emission	Input level: ≥–10 dBm, Allocated RB: ≤18
		≤–40 dBc
Occupied Bandwidth	Input Level Range	-10 to +35 dBm (Test port 1 and 2)
		-10 to +25 dBm (Test port 3 and 4)
	OBW Ratio	80.0 to 99.9%
Adjacent Channel Leakage Power	Input Level Range	-10 to +35 dBm (Test port 1 and 2)
		-10 to +25 dBm (Test port 3 and 4)
Ratio	Measurement Range	≥45 dB (E-UTRA ACLR1), ≥50 dB (UTRA ACLR1), ≥55 dB (UTRA ACLR2)
Spectrum	Input Level Range	-10 to +35 dBm (Test port 1 and 2)
Emission Mask	input Lovel I tange	-10 to +25 dBm (Test port 3 and 4)

MX887015A CDMA2000 Reverse Link TX Measurement

Common Item	Measuring Object	Reverse RC-1/2/3/4
Common item	Frequency Range	400 MHz to 2.7 GHz
	Input Level Range	-65 to +35 dBm (Test port 1 and 2) -65 to +25 dBm (Test port 3 and 4)
		After CAL, 10° to 40°C
RF Power	Measurement Accuracy	Test port 1 and 2 ±0.3 dB (typ.), ±0.5 dB (-25 to +35 dBm) ±0.7 dB (-55 to -25 dBm) ±0.9 dB (-65 to -55 dBm)
		Test port 3 and 4 ±0.7 dB (–25 to +25 dBm)
		±0.9 dB (-55 to -25 dBm) ±1.1 dB (-65 to -55 dBm)
	Linearity	±0.2 dB (≥–55 dBm, 0 to 40 dB) ±0.4 dB (≥–65 dBm, 0 to 40 dB)
Frequency/	Input Level Range	-30 to +35 dBm (Test port 1 and 2) -30 to +25 dBm (Test port 3 and 4)
Modulation Measurement	Carrier Frequency Accuracy	± (Setting frequency × Reference oscillator accuracy + 10 Hz)
weasurement	Waveform Quality	>0.999
0 I D .	Reverse RC3 or RC4	
Code Domain Power Measurement	Input Level Range	-30 to +35 dBm (Test port 1 and 2) -30 to +25 dBm (Test port 3 and 4)
	Measurement Accuracy	±0.2 dB (Code power: ≥–15 dBc), ±0.4 dB (Code power: ≥–23 dBc)
Occupied	Input Level Range	-10 to +35 dBm (Test port 1 and 2) -10 to +25 dBm (Test port 3 and 4)
Bandwidth	OBW Ratio	80.0 to 99.9%

MX887016A 1xEV-DO Reverse Link TX Measurement

	Measuring Object	Reverse Link Rev. 0/Rev. A
Common Item	Frequency Range	400 MHz to 2.7 GHz
RF Power	Input Level Range	-65 to +35 dBm (Test port 1 and 2) -65 to +25 dBm (Test port 3 and 4)
	Measurement Accuracy	After CAL, 10° to 40°C Test port 1 and 2 ±0.3 dB (typ.), ±0.5 dB (-25 to +35 dBm) ±0.7 dB (-55 to -25 dBm) ±0.9 dB (-65 to -55 dBm)
		Test port 3 and 4 ±0.7 dB (-25 to +25 dBm) ±0.9 dB (-55 to -25 dBm) ±1.1 dB (-65 to -55 dBm)
	Linearity	±0.2 dB (≥–55 dBm, 0 to 40 dB) ±0.4 dB (≥–65 dBm, 0 to 40 dB)
Frequency/	Input Level Range	-30 to +35 dBm (Test port 1 and 2) -30 to +25 dBm (Test port 3 and 4)
Modulation Measurement	Carrier Frequency Accuracy	± (Setting frequency × Reference oscillator accuracy + 10 Hz)
weasurement	Waveform Quality	>0.999
Code Domain Power Measurement	Input Level Range	-30 to +35 dBm (Test port 1 and 2) -30 to +25 dBm (Test port 3 and 4)
	Measurement Accuracy	±0.2 dB (Code power: ≥–15 dBc), ±0.4 dB (Code power: ≥–23 dBc)
Occupied	Input Level Range	-10 to +35 dBm (Test port 1 and 2) -10 to +25 dBm (Test port 3 and 4)
Bandwidth	OBW Ratio	80.0 to 99.9%

MX887017A TD-SCDMA Uplink TX Measurement

Common Item	Measuring Object	TD-SCDMA Uplink signal
Common tiem	Frequency Range	400 MHz to 2.7 GHz
	Input Level Range	-65 to +35 dBm (Test port 1 and 2) -65 to +25 dBm (Test port 3 and 4)
		After CAL, 10° to 40°C
RF Power	Measurement Accuracy	Test port 1 and 2 ±0.3 dB (typ.), ±0.5 dB (-25 to +35 dBm) ±0.7 dB (-55 to -25 dBm) ±0.9 dB (-70 to -55 dBm)
		Test port 3 and 4
		±0.7 dB (-25 to +25 dBm)
		±0.9 dB (-55 to -25 dBm)
		±1.1 dB (-70 to -55 dBm)
	Linearity	±0.2 dB (≥–55 dBm, 0 to 40 dB)
		±0.4 dB (≥–65 dBm, 0 to 40 dB)
	Input Level Range	-30 to +35 dBm (Test port 1 and 2)
Frequency/		-30 to +25 dBm (Test port 3 and 4)
Modulation	Carrier Frequency Accuracy	± (Setting frequency × Reference oscillator accuracy + 10 Hz)
Measurement	Modulation Accuracy	Residual EVM: At Single Code input
	Modulation Accuracy	≤2.5%
Occupied	Input Level Range	-10 to +35 dBm (Test port 1 and 2)
Bandwidth		-10 to +25 dBm (Test port 3 and 4)
Danawiati	OBW Ratio	99.0%
Adiagant Charact	Input Level Range	-10 to +35 dBm (Test port 1 and 2)
Adjacent Channel Leakage Power		-10 to +25 dBm (Test port 3 and 4)
Ratio	Measurement Points	±1.6 MHz, ±3.2 MHz
Nauo	Measurement Range	≥50 dB (±1.6 MHz), ≥55 dB (±3.2 MHz)

MV887011A W-CDMA/HSPA Downlink Waveforms

EVM	≤3% rms (400 MHz ≤ f ≤ 2.7 GHz)

MV887012A GSM/EDGE Downlink Waveforms

Phase Error	≤1° rms (400 MHz ≤ f ≤ 2.7 GHz, GMSK modulation)	
EVM	≤1.8% rms (400 MHz ≤ f ≤ 2.7 GHz, 8PSK modulation)	

MV887013A LTE FDD Downlink Waveforms

Max. Output Level	Test port 1 and 2 -12 dBm (f ≤ 3.8 GHz), -20 dBm (f > 3.8 GHz) Test port 3 and 4 -2 dBm (f ≤ 3.8 GHz), -10 dBm (f > 3.8 GHz)
EVM	≤2% rms (400 MHz ≤ f ≤ 2.7 GHz), ≤3% rms (3.4 GHz ≤ f ≤ 3.8 GHz)

MV887014A LTE TDD Downlink Waveforms

Max. Output Level	Test port 1 and 2 -12 dBm (f ≤ 3.8 GHz), -20 dBm (f > 3.8 GHz) Test port 2 and 4
Output Level	Test port 3 and 4 -2 dBm (f ≤ 3.8 GHz), -10 dBm (f > 3.8 GHz)
EVM	≤2% rms (400 MHz ≤ f ≤ 2.7 GHz), ≤3% rms (3.4 GHz ≤ f ≤ 3.8 GHz)

MV887015A CDMA2000 Forward Link Waveforms

Waveform Quality >0.99 (400 MHz \leq f \leq 2.7 GHz)

MV887016A 1xEV-DO Forward Link Waveforms

Waveform Quality >0.99 (400 MHz \leq f \leq 2.7 GHz, Pilot channel)

MV887017A TD-SCDMA Downlink Waveforms

EVM ≤3% rms (400 MHz ≤ f ≤ 2.7 GHz)

MX887030A WLAN 802.11b/g/a/n TX Measurement

0	Measuring Object	WLAN Signal Packet
Common Item	Frequency Range	2.4 GHz Band: 2412 MHz to 2484 MHz 5 GHz Band: 4920 MHz to 5825 MHz (Required MX887000A-001)
	Input Setting Range	-65 to +25 dBm (Test port 3 and 4)
	Accuracy	After CAL, 20° to 30°C ±0.7 dB (-30 dBm ≤ Level ≤ +25 dBm), ±1.0 dB (-50 dBm ≤ Level < -30 dBm)
	Bandwidth	40 MHz, 20 MHz (802.11n)
		20 MHz (802.11b/g/a)
RF Power	Capture Time	Up to 1.34 s
	Pre-trigger	Up to 1.34 s
	Resolution (time domain profile)	5 ns/sample
	CCDF	CCDF defined as a percentage of samples against dB, where percentage of samples is normalized to the average power in the 'gate', and dB is defined as the relative value of samples greater than the average.
	Power Distribution Value	A single numeric value called the power distribution value defines the number of dB above the average power below which a user defined percentage of the total number of samples falls.
	Span	±65 MHz (802.11n) ±35 MHz (802.11b/g/a)
	Minimum Capture Time	50 µs
Spectral Profile	Input Signal Measurement Range (RBW: 100 kHz)	-27 to +25 dBm
Measurement	Linearity	CW, RBW: 100 kHz, Same as MU887000A Level Linearity Test port 3 and 4. ±0.2 dB (≥ –55 dBm, 0 to –40 dB)
	Resolution	0.1 dB
	Bandwidth	100 kHz
	Measurement Range	-20 to +25 dBm
EVM	Residual EVM	DSSS: <-28 dB (Signal level: >-20 dBm, Averaged over 20 packets) OFDM: <-40 dB (Signal level: >-20 dBm, Averaged over 20 packets, Channel Estimation: FULLPACKET
(Modulation	EVM Data Format	dB, %
Accuracy)	Resolution	0.1% or 0.1 dB, All limit checking in dB to 0.1 dB resolution
	Speed	>20 readings/second
	RX Filter Type	None, Gaussian, Root Raised Cosine
	Gaussian Filter Setting BT	BT 0.3 to 1.0, Resolution: 0.1
	Root Raised Cosine Filter Setting	α 0.30 to 1.00, Resolution: 0.01
DSSS EVM	Measurement Start	It shall be possible to measure EVM from the first data chip of the packet
Measurement	Measurement Method	Header or payload. Header measures the EVM of the first 1000 chips of the PLCP preamble and header.
Setting	User Specified Measurement Range	220 to 11000 chips
	Measurement Functional Range	Measurement only possible if channel frequency error <±150 kHz (±60 ppm)
	Carrier Lock	Phase tracking automatically applied as per carrier lock 802.11-2007 18.4.7.8
	Channel Estimation	User selection of Long Training Sequence or Full Packet.
		Min. 16 symbols, Max. 1000 symbols
OFDM EVM	User Specified Measurement Range	"Phase tracking only" or "Phase and Amplitude Tracking".
Measurement		Peak and Average EVM on all sub-carriers, dB or percentage
Setting	OFDM Pilot Tracking	Peak and Average on each sub-carrier – frequency domain % vs. sub-carrier
		EVM vs. Symbol – time domain % vs. Symbol number, 1 to max
		Definition: Average frequency of the DSSS carrier signal
	Transmit Center Frequency	Accuracy: ± (Setting frequency × Reference oscillator accuracy + 1 kHz)
	Tolerance	Resolution: Hz to no decimal places, ppm to one decimal place
		Definition: Frequency error relative to the 11 MHz chip clock. Measurement averaged over a fully
		coded DSSS packet with minimum payload length 3300 chips, 300 µs
		Display format: Hz, ppm
	Chip Clock Frequency Tolerance	Range: ±50 ppm
		Resolution: Hz to no decimal places, ppm to one decimal place
DSSS Additional		Data Analysis width: 20 µs (220 chips) minimum
Measurement		User Specified measurement range: 3300 to 30250 chips Definition: Time for burst to transit from 10 to 90% or 90 to 10% of linear power.
	Transmit Power-on and Power	Definition: Time for burst to transit from 10 to 90% or 90 to 10% of linear power. Data outputs: 10%, 90%, Delta values
	Down Ramp	Resolution: 5 ns
		Method: IEEE Std 802.11-2007 (18.4.7.7), IQ offset method
		IEEE method: Relative level of the carrier to the highest sideband for a 10101010 test pattern with
	RF Carrier Suppression	scrambler disabled, data rate 2 Mbps.
		Solution algunda, auto rato rato pol
		IQ Offset method: Calculated from the relative values of the peak frequency response and the

		Definition: Average frequency of the OFDM carrier signal Data output format: Hz, ppm Accuracy: >1 ms packet, ± (Setting frequency × Reference oscillator accuracy + 1 kHz)
OFDM Additional Measurement	Transmit Center Frequency Tolerance	Resolution: Hz to no decimal places, ppm to one decimal place Symbol clock frequency tolerance Definition: Frequency error relative to the 250 kHz symbol clock as per 19.4.7.3/17.3.9.5 Measurement averaged over a fully coded OFDM packet with a minimum payload length of 16 symbols (64 μs) Data output format: Hz, ppm Range: ±40 ppm Resolution: ppm to one decimal place User specified measurement range: 16- (Define numbers)
	Transmitter Center Frequency Leakage	Definition: Measurement of the leakage of the center carrier Data output format: dB Resolution: dB to two decimal places Transmitter spectral flatness Definition: Measurement of RF sub-carrier power level Unit of measurement: dB
Additional	Power Spectral Density	The maximum power measured in a 1 MHz bandwidth within the occupied bandwidth of the signal
Measurement	Occupied Bandwidth	Measures the frequency range within which the specified percentage power is contained
(DSSS and OFDM)	Occupied Bandwidth Percentage Range	1 to 99%

MX887031A WLAN 802.11ac TX Measurement

Common Item	Measuring Object	WLAN Signal Packet
	Frequency Range	5 GHz Band: 4920 MHz to 5825 MHz (Required MX887000A-001)
	Input Setting Range	-65 to +25 dBm (Test port 3 and 4)
	Accuracy	After CAL, 20° to 30°C ±0.7 dB (–30 dBm ≤ Level ≤ +25 dBm), ±1.0 dB (–50 dBm ≤ Level < –30 dBm)
	Bandwidth	160, 80, 40, 20 MHz
	Capture Time	Up to 1.34 s
RF Power	Pre-trigger	Up to 1.34 s
	Resolution (time domain profile)	5 ns/sample
	CCDF	CCDF defined as a percentage of samples against dB, where percentage of samples is normalized to the average power in the 'gate', and dB is defined as the relative value of samples greater than the average.
	Power Distribution Value	A single numeric value called the power distribution value defines the number of dB above the average power below which a user defined percentage of the total number of samples falls.
	Spectral Profile Measurement Span	±80 MHz
	Minimum Capture Time	50 µs
Spectral Profile	Input Signal Measurement Range (RBW: 100 kHz)	-27 to +25 dBm
Measurement	Linearity	CW, RBW: 100 kHz ±0.2 dB (≥ –55 dBm, 0 to –40 dB)
	Resolution	0.1 dB
	Measurement Bandwidth	100 kHz
	EVM Measurement Range	-20 to +25 dBm
EVM	Residual EVM (Bandwidth: ≤80 MHz)	<-38 dB (Signal level: >-10 dBm, Averaged over 20 packets, Channel estimation: FULLPACKET)
(Modulation	EVM Data Format	dB, %
Accuracy)	Measurement Resolution	0.1% or 0.1 dB, All limit checking in dB to 0.1 dB resolution
	Measurement Speed	>20 readings/second
	Channel Estimation	User selection of Long Training Sequence or Full Packet.
OFDM EVM	User Specified Measurement Range	Min. 16 symbols, Max. 1000 symbols
Measurement Setting	OFDM Pilot Tracking	"Phase tracking only" or "Phase and Amplitude Tracking". Peak and Average EVM on all sub-carriers, dB or percentage Peak and Average on each sub-carrier – frequency domain % vs. sub-carrier EVM vs. Symbol – time domain % vs. Symbol number, 1 to max.
OFDM Additional Measurement	Transmit Center Frequency Tolerance	 Definition: Average frequency of the OFDM carrier signal Data output format: Hz, ppm Accuracy: >1 ms packet, ± (Setting frequency × Reference oscillator accuracy + 1 kHz) Resolution: Hz to no decimal places, ppm to one decimal places Symbol clock frequency tolerance Definition: Frequency error relative to the 250 kHz symbol clock as per 19.4.7.3/17.3.9.5 Measurement averaged over a fully coded OFDM packet with a minimum payload length of 16 symbols (64 µs) Data output format: Hz, ppm Range: ±40 ppm Resolution: ppm to one decimal places User specified measurement range: 16- (Define numbers)
	Transmitter Center Frequency Leakage	Definition: Measurement of the leakage of the center carrier Data output format: dB Resolution: dB to two decimal places Transmitter spectral flatness Definition: Measurement of RF sub-carrier power level Unit of measurement: dB

MX887040A Bluetooth TX Measurement

	Measuring Object	Bluetooth Signal Packet (DH-1, 3, 5 2-DH-1, 3, 5 3-DH-1, 3, 5 LE)
Common Item	Frequency Range	2402 MHz to 2480 MHz
	Measurement Mode	'SIG Standard' Supports RF measurements on selected packet types as per the SIG RF test standard
	Input Signal Measurement Range	-65 to +25 dBm (Test port 3 and 4)
RF Power	Measurement Accuracy	After CAL, 20° to 30°C ±0.7 dB (–30 dBm ≤ Level ≤ +25 dBm), ±1.0 dB (–50 dBm ≤ Level < –30 dBm)
	Input Signal Measurement Range	-35 to +25 dBm
	Measurement	Maximum, Minimum, Average differential power
EDR Relative Transmit Power	Relative Power Measurement Range	Relative power measurement range between the GFSK and π /4DQPSK or 8DSPK sections of the packet
	Power Measurement Bandwidth	1.3 MHz (IF filter response 'flat' fc ±550 kHz)
	Maximum Resolution (time domain)	0.01 dB
	GFSK, π/4DQPSK, 8DPSK	
	DEVM (Modulation Accuracy)	
	Input Signal Measurement Range	-20 to +25 dBm
	Residual DEVM	<5% (Signal level: >-20 dBm, Averaged over 10 packets)
	Measurement Resolution	0.1%
		Deviation measurement range: 0 to 350 kHz
Bluetooth Modulation	GFSK Modulation	Accuracy: Modulation index: 0.32, Signal level: >–20 dBm, Averaged over 10 packets 1% (±0.01 × expected deviation [Hz]) (nominal)
	Initial Carrier Frequency Tolerance	Input signal measurement range: –35 to +25 dBm Initial frequency measurement range: 0 to ±150 kHz Resolution: 1 kHz
	Carrier-frequency Drift	Input signal measurement range: –35 to +25 dBm Frequency drift range: 0 to ±200 kHz Time settings: 50 μs, >2000 μs
	Measurement Range	±100 kHz
EDR Carrier	Resolution	1 kHz
Frequency Stability	Accuracy	Signal level: >-20 dBm, Averaged over 10 packets ± (Setting frequency × Reference oscillator accuracy + 500 Hz)
	Displayed Results	Initial frequency error ωi, Frequency error ωo, Frequency error ωi + ωο
EDR Modulation	RMS DEVM Range	0 to 30% π/4DQPSK, 0 to 20% 8DPSK
Accuracy	Peak DEVM Range	0 to 50% π/4DQPSK, 0 to 30% 8DPSK
	GFSK	
	Input Signal Measurement Range	-35 to +25 dBm
BLE Modulation	Frequency Deviation Measurement Range	0 to ±500 kHz peak
Characteristics	Resolution	1 kHz
	Accuracy	Modulation index: 0.5, Signal level: >-20 dBm, Averaged over 10 packets 1% (±0.01 × expected deviation [Hz]) (nominal)
	Input Signal Measurement Range	-35 to +25 dBm
BLE Carrier	Frequency Measurement Range	0 to ±500 kHz
Frequency Offset and Drift	Accuracy	Signal level: >-20 dBm, Averaged over 10 packets ± (Setting frequency × Reference oscillator accuracy + 500 Hz)
	Displayed Results	Carrier frequency error, Frequency drift, Drift rate

MX887050A Short Range Wireless Average Power and Frequency Measurement

	Input Setting Range	-65 to +25 dBm (Test port 3 and 4)
	Frequency Range	2.4 GHz Band: 2402 MHz to 2484 MHz
		5 GHz Band: 4920 MHz to 5825 MHz (Require MU887000A-001)
		After CAL
		400 MHz ≤ f ≤ 3.8 GHz, 10° to 40°C
RF Power		$\pm 0.7 \text{ dB} (-30 \le \text{Level} \le +25 \text{ dBm})$
(CW and		±0.9 dB (–55 ≤ Level < –30 dBm)
Continuously	Measurement Accuracy	±1.1 dB (–65 ≤ Level < –55 dBm)
Modulated)		3.8 GHz ≤ f ≤ 6 GHz, 20° to 30°C
		±0.7 dB (–30 ≤ Level ≤ +25 dBm)
		±0.9 dB (–55 ≤ Level < –30 dBm)
		±1.1 dB (–65 ≤ Level < –55 dBm)
	Linearity	CW, RBW: 100 kHz
	Linearity	±0.2 dB (≥–55 dBm, 0 to –40 dB)
Frequency	Power Measurement Range	-35 to +25 dBm
(CW and	Frequency Measurement Range	0 to ±500 kHz (CW, Bluetooth)
Continuously	r requency measurement Range	0 to ±100 kHz (WLAN)
Modulated)	Accuracy	± (Setting frequency × Reference oscillator accuracy + 500 Hz)

MV887030A WLAN 802.11b/g/a/n Waveforms

	802.11b	Packet length: 1024 byte, Gaussian filter: BT 0.5
	802.11g	≤-38 dB rms (2402 MHz to 2484 MHz) Packet length: 1000 byte, 20° to 30°C
EVM		≤–40 dB rms (2402 MHz to 2484 MHz) Packet length: 1000 byte, 20° to 30°C
	802.11a	Section 24 and 25 and 26 an
	802.11n	≤-40 dB rms (2402 MHz to 5825 MHz) ≤-38 dB rms (4920 MHz to 5825 MHz)

MV887040A Bluetooth Waveforms

Deviation	Frequency: 2402 MHz to 2480 MHz, GFSK modulation 1% (±0.01 × Deviation Hz) (nominal)
DEVM	Frequency: 2402 MHz to 2480 MHz, π/4-DQPSK or 8-DPSK modulation <5% rms

MV887112A ISDB-Tmm Waveforms

	Frequency: 214.714285 MHz
MER	≥37 dB (total)

MX887070A FM/Audio TRX Measurement

FM Signal Measurements

Common Item	Target Signals	FM/FM Stereo/RDS (Radio Data System) Signals	
	Frequency Range	65 MHz to 110 MHz	
Tx Measurements	Measurement Functions	Amplitude Carrier Frequency Frequency Deviation Occupied Bandwidth Pilot Frequency Deviation Audio Frequency Deviation Audio Frequency Pilot Frequency THD THD THD+N/SINAD SNR	
	Audio Filter	Low Pass: OFF, 3 kHz,15 kHz, 20 kHz, 30 kHz High Pass: OFF, 20 Hz, 100 Hz, 400 Hz De-emphasis: OFF, 50 μs, 75 μs Band Pass (Weighting Filter): OFF, A-Weighting (IEC 61672: 2003), C-Message, CCITT (ITU-T O.41)	
	Input Level Range	-30 to +15 dBm (Test Port 1/2) -30 to +15 dBm (Test Port 3/4)	
	Level Accuracy	At Measurement Bandwidth = 1.2 MHz Test Port 1/2 $-30 \text{ dBm} \le \text{Level} \le +15 \text{ dBm}, \pm 0.7 \text{ dB} \text{ at } 10^{\circ} \text{ to } 40^{\circ}\text{C}$ Test Port 3/4	
	Carrier Frequency Accuracy	 -30 dBm ≤ Level ≤ +15 dBm, ±0.7 dB at 10° to 40°C FM Mono modulation, with 1 kHz Tone, 75 kHz deviation ± (Setting frequency × Reference oscillator accuracy + 1 Hz) 	
	FM Deviation Measurement Range	1 kHz to 100 kHz	
	Residual FM	At Mono, 1 kHz Tone, 75 kHz deviation, demodulation bandwidth: 20 Hz to 15 kHz, using De-emphasis Filter (50 μs) >55 dB	
	Demodulation Signal Analysis	No. of FFT Points: 65536 Sampling Rate: 152 kHz FFT window function: Hanning window	
Rx Measurements	Measurement Functions	FM Waveform output	
	Modulation Method	FM Mono, FM Stereo	
	Frequency Deviation	Setting Range: 20 kHz to 100 kHz Distortion: >50 dB (SINAD) [65 MHz to 110 MHz, (SINAD, 20 Hz to 15 kHz, Emphasis On, Mono) Deviation 75 kHz, Tone = 1 kHz] Resolution: 0.1 Hz	
	Internal Modulation Signal	AF Tone L channel (Mono): 1 to 8 tones R channel: 1 to 8 tones	
	Frequency Range	20 Hz to 20 kHz Resolution: 0.1 Hz	

Audio Signal Measurements With MU887000A-002 Audio Measurement Hardware installed, TRx measurements of analog audio signal from AF Input/Output connector or digital audio signal from AF Digital connector

	I II OIII AF DIgital connector	
Tx Measurements	Measurement Functions	Amplitude Frequency Distortion Ratio Measurement Crosstalk THD THD+N/SINAD SNR
	Analog Measurements	All single-tone measurement standard values Impedance: 100 kΩ (AC coupling) Frequency Measurement Frequency Range: 20 Hz to 20 kHz Level Measurement Measurement Range: 1 mVpeak to 5 Vpeak (30 Vrms Max.) Input Range Setting: 50 mVpeak, 500 mVpeak, 5 Vpeak Level Accuracy: ±0.4 dB (20° to 30°C) THD+N (Total Harmonic Distortion + Noise) <-60 dB (at 1 kHz, 2 Vpeak, 20 Hz to 20 kHz bandwidth, 5 Vpeak range, 20° to 30°C) Crosstalk L/R: >60 dB AF Signal Analysis Sampling Rate: 192 kHz No. of FFT Points: 65536 FFT window function: Hanning window
	Digital Measurement	All single-tone measurement standard values Bit Resolution: 16 bits/24 bits Sampling Rate Frequency: 16 kHz, 32 kHz, 44.1 kHz, 48 kHz AF Signal Analysis No. of FFT Points: 16384 (sampling rates of 48 kHz, 44.1 kHz) 8192 (sampling rate of 32 kHz) 4096 (sampling rate of 16 kHz) FFT window function: Hanning window
Rx Measurement	Analog Measurements	All single-tone measurement standard values Impedance: 1 Ω (nominal, AC coupling) Output Waveform: Single tone, Multi-tone Frequency Frequency Range: 20 Hz to 20 kHz Frequency Resolution: 0.01 Hz Output Level Level Range: 0 (off), 1 mV to 5 Vpeak (100 kΩ termination) Level Resolution: 1 mV (≤5 Vpeak) 10 μV (≤500 mVpeak) 10 μV (≤500 mVpeak) Level Accuracy: ±0.3 dB (At 1 kHz, 100 kΩ termination, 20° to 30°C) Max Output Current 100 mA (nominal) Do not do short circuit THD+N (Total Harmonic Distortion + Noise) <-60 dB (At 1 kHz, 1 Vpeak, 20 Hz to 20 kHz bandwidth, 100 kΩ termination, 20° to 30°C)
	Digital Measurement	All single-tone measurement standard values Output Waveform: Single tone, Multi-tone Frequency Frequency Range: 20 Hz to 20 kHz (44.1 kHz, 48 kHz sampling) 20 Hz to 14 kHz (32 kHz sampling) 20 Hz to 7 kHz (16 kHz sampling) Frequency Resolution: 0.01 Hz Output Level Level Range: Full Scale to (Full Scale – 40 dB) Level Resolution: 0.1 dB Bit Resolution: 16 bits/24 bits Sampling Rate Frequency: 16 kHz, 32 kHz, 44.1 kHz, 48 kHz

Ordering Information

Please specify the model/order number, name and quantity when ordering. The names listed in the chart below are Order Names. The actual name of the item may differ from the Order Name.

Model/Order No.	Name		
	Main frame		
MT8870A	Universal Wireless Test Set		
	Standard accessories		
	Power Cord: 1 pc		
B0666A	Blank Panel: 3 pcs*1		
	DVD-R: 1 pc		
MX880050A	CombiView (DVD-R)		
MX880051A	Cellular Application Applet (DVD-R)		
MX880052A	SRW Application Applet (DVD-R)		
MX880053A	FM/Audio Application Applet (DVD-R)		
MX880054A	Signal Generator Application Applet (DVD-R)		
MX887900A	MT8870A Utility Tool (DVD-R)		
W3605AE	MT8870A Operation Manual (DVD-R)		
W3606AE	MU887000A Operation Manual (DVD-R)		
	Options		
MT8870A-001	GPIB Control		
MT8870A-101	GPIB Control Retrofit		
	Warranty		
MT8870A-ES210	2 Years Extended Warranty Service		
MT8870A-ES310	3 Years Extended Warranty Service		
MT8870A-ES510	5 Years Extended Warranty Service		
	Application parts		
B0666A	Blank Panel		
B0664A	Rack Mount Kit (MT8870A)		
B0665A	Carrying Case (MT8870A)		
B0669A	Front Cover for 1MW5U (MT8870A)		
J0006	GPIB Cable, 0.5 m		
J0007	GPIB Cable, 1.0 m		
J0008	GPIB Cable, 2.0 m		
J0127A	Coaxial Cord, 1 m (BNC-P · RG-58A/U · BNC-P)		
J0127B	Coaxial Cord, 2.0 m (BNC-P · RG-58A/U · BNC-P)		
J0127C	Coaxial Cord, 0.5 m (BNC-P · RG-58A/U · BNC-P)		
J0576B	Coaxial Cord, 1.0 m (N-P · 5D-2W · N-P)		
J0576D	Coaxial Cord, 2.0 m (N-P · 5D-2W · N-P)		
J0322A	Coaxial Cord, 0.5 m (SMA-P \cdot SMA-P, DC to 18 GHz, 50Ω)		
J0322B	Coaxial Cord, 1.0 m (SMA-P \cdot SMA-P, DC to 18 GHz, 50 Ω)		
J0322C	Coaxial Cord, 1.5 m (SMA-P \cdot SMA-P, DC to 18 GHz, 50 Ω)		
J0322D	Coaxial Cord, 2.0 m (SMA-P \cdot SMA-P, DC to 18 GHz, 50 Ω)		
J0004	Coaxial Adapter (N-P · SMA-J)		
J1261A	Ethernet Cable (Shield type, Straight, 1 m)		
J1261B	Ethernet Cable (Shield type, Straight, 3 m)		
J1261C	Ethernet Cable (Shield type, Crossover, 1 m)		
J1261D	Ethernet Cable (Shield type, Crossover, 3 m)		

*1: Installed in empty slots

Test module MU887000A TRX Test Module Standard accessories DVD-R: 1 pc W3606AE MU887000A Operation Manual (DVD-R) Options MU887000A-001 6 GHz Frequency Extension MU887000A-101 6 GHz Frequency Extension Retrofit MU887000A-002 Audio Measurement Hardware MU887000A-102 Audio Measurement Hardware Retrofit Warranty MU887000A-ES210 2 Years Extended Warranty Service MU887000A-ES310 3 Years Extended Warranty Service MU887000A-ES510 5 Years Extended Warranty Service Model/Order No. Name Software MX887010A Cellular Standards Sequence Measurement MX887011A W-CDMA/HSPA Uplink TX Measurement MX887012A GSM/EDGE Uplink TX Measurement LTE FDD Uplink TX Measurement MX887013A MX887014A LTE TDD Uplink TX Measurement MX887015A CDMA2000 Reverse Link TX Measurement MX887016A 1xEV-DO Reverse Link TX Measurement MX887017A **TD-SCDMA Uplink TX Measurement** MX887030A WLAN 802.11b/g/a/n TX Measurement*2 MX887031A WLAN 802.11ac TX Measurement*2 MX887040A Bluetooth TX Measurement MX887050A Short Range Wireless Average Power and Frequency Measurement MX887070A FM/Audio TRX Measurement*3 Waveform file MV887011A W-CDMA/HSPA Downlink Waveforms MV887012A GSM/EDGE Downlink Waveforms MV887013A LTE FDD Downlink Waveforms MV887014A LTE TDD Downlink Waveforms MV887015A CDMA2000 Forward Link Waveforms MV887016A 1xEV-DO Forward Link Waveforms MV887017A TD-SCDMA Downlink Waveforms WLAN 802.11b/g/a/n Waveforms*2 MV887030A

Name

Model/Order No.

MV887031A WLAN 802.11ac Waveforms*2 Bluetooth Waveforms MV887040A MV887070A FM RDS Waveforms GPS Waveforms MV887100A MV887102A **GLONASS** Waveforms MV887110A **DVB-H Waveforms** MV887111A ISDB-T Waveforms MV887112A **ISDB-Tmm Waveforms**

*2: Requires MU887000A-001 for 5 GHz (802.11a/n/ac) frequency

measurements

*3: Requires MU887000A-002 for Audio Signal measurements

• CDMA2000[®] is a registered trademark of the Telecommunications Industry Association (TIA-USA).

• The Bluetooth® mark and logos are owned by Bluetooth SIG, Inc. and are used by Anritsu under license.

• Windows[®] is a registered trademark of Microsoft Corporation in the USA and other countries.

Other companies, product names and service names are registered trademarks of their respective companies.

Note:

Note:

/incitsu

United States

Anritsu Company 1155 East Collins Blvd., Suite 100, Richardson, TX 75081, U.S.A. Toll Free: 1-800-267-4878 Phone: +1-972-644-1777 Fax: +1-972-671-1877

Canada

Anritsu Electronics Ltd. 700 Silver Seven Road. Suite 120. Kanata. Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006

Brazil Anritsu Eletrônica Ltda.

Praça Amadeu Amaral, 27 - 1 Andar 01327-010 - Bela Vista - São Paulo - SP - Brazil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940

Mexico

Anritsu Company, S.A. de C.V. Av. Ejército Nacional No. 579 Piso 9, Col. Granada 11520 México, D.F., México Phone: +52-55-1101-2370 Fax: +52-55-5254-3147

United Kingdom

Anritsu EMEA Ltd. 200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K. Phone: +44-1582-433200 Fax: +44-1582-731303

• France

Anritsu S.A. 12 avenue du Québec, Bâtiment Iris 1- Silic 612, 91140 VILLEBON SUR YVETTE, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65

Germany

Anritsu GmbH Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49-89-442308-0 Fax: +49-89-442308-55

Italy

Anritsu S.r.I. Via Elio Vittorini 129, 00144 Roma, Italy Phone: +39-6-509-9711 Fax: +39-6-502-2425

Sweden Anritsu AB

Kistagången 20B, 164 40 KISTA, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30

Finland Anritsu AB Teknobulevardi 3-5, FI-01530 VANTAA, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111

Denmark Anritsu A/S (Service Assurance) Anritsu AB (Test & Measurement) Kay Fiskers Plads 9, 2300 Copenhagen S, Denmark Phone: +45-7211-2200 Fax: +45-7211-2210

Russia

Anritsu EMEA Ltd. **Representation Office in Russia** Tverskaya str. 16/2, bld. 1, 7th floor. Russia, 125009, Moscow

Phone: +7-495-363-1694 Fax: +7-495-935-8962

United Arab Emirates Anritsu EMEA Ltd.

Dubai Liaison Office P O Box 500413 - Dubai Internet City Al Thuraya Building, Tower 1, Suit 701, 7th Floor Dubai, United Arab Emirates Phone: +971-4-3670352 Fax: +971-4-3688460

India

Anritsu India Private Limited

2nd & 3rd Floor, #837/1, Binnamangla 1st Stage, Indiranagar, 100ft Road, Bangalore - 560038, India Phone: +91-80-4058-1300 Fax: +91-80-4058-1301

Specifications are subject to change without notice.

Singapore

Anritsu Pte. Ltd. 11 Chang Charn Road, #04-01, Shriro House Singapore 159640 Phone: +65-6282-2400 Fax: +65-6282-2533

• P.R. China (Shanghai) Anritsu (China) Co., Ltd.

Room 2701-2705, Tower A, New Caoheiing International Business Center No. 391 Gui Ping Road Shanghai, 200233, P.R. China Phone: +86-21-6237-0898 Fax: +86-21-6237-0899

• P.R. China (Hong Kong)

Anritsu Company Ltd. Unit 1006-7, 10/F., Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong, P.R. China Phone: +852-2301-4980 Fax: +852-2301-3545

Japan

Anritsu Corporation 8-5, Tamura-cho, Atsugi-shi, Kanagawa, 243-0016 Japan Phone: +81-46-296-1221 Fax: +81-46-296-1238

Korea

Anritsu Corporation, Ltd. 5FL, 235 Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400 Korea Phone: +82-31-696-7750 Fax: +82-31-696-7751

Australia

Anritsu Pty. Ltd.

Unit 21/270 Ferntree Gully Road, Notting Hill, Victoria 3168, Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255

Taiwan

Anritsu Company Inc. 7F, No. 316, Sec. 1, NeiHu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817

	140	1
Please Contact:		